Time-Varying Soft-Maximum Control Barrier Functions for Safety in an A Priori Unknown Environment

Amirsaeid Safari, Jesse B. Hoagg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a time-varying soft-maximum composite control barrier function (CBF) that can be used to ensure safety in an a priori unknown environment, where local perception information regarding the safe set is periodically obtained. We consider the scenario where the periodically obtained perception feedback can be used to construct a local CBF that models a local subset of the unknown safe set. Then, we use a novel smooth time-varying soft-maximum function to compose the N most recently obtained local CBFs into a single CBF. This composite CBF models an approximate union of the N most recently obtained local subsets of the safe set. Notably, this composite CBF can have arbitrary relative degree r. Next, this composite CBF is used as a rth-order CBF constraint in a real-time optimization to determine a control that minimizes a quadratic cost while guaranteeing that the state stays in a time-varying subset of the unknown safe set. We also present an application of the time-varying soft-maximum composite CBF method to a nonholonomic ground robot with nonnegligible inertia. In this application, we present a simple approach to generate the local CBFs from the periodically obtained perception data.

Original languageEnglish
Title of host publication2024 American Control Conference, ACC 2024
Pages3698-3703
Number of pages6
ISBN (Electronic)9798350382655
DOIs
StatePublished - 2024
Event2024 American Control Conference, ACC 2024 - Toronto, Canada
Duration: Jul 10 2024Jul 12 2024

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Conference

Conference2024 American Control Conference, ACC 2024
Country/TerritoryCanada
CityToronto
Period7/10/247/12/24

Bibliographical note

Publisher Copyright:
© 2024 AACC.

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Time-Varying Soft-Maximum Control Barrier Functions for Safety in an A Priori Unknown Environment'. Together they form a unique fingerprint.

Cite this