Abstract
We report on the enhancement of the field-effect mobility of solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) by unidirectional topography (UT) of an inkjet-printed polymer insulator. The UT leads to anisotropic spreading and drying of the TIPS-pentacene droplet and enables to spontaneously develop the ordered structures during the solvent evaporation. The mobility of the UT-dictated TIPS-pentacene film (0.202 ± 0.012 cm2/Vs) is found to increase by more than a factor of two compared to that of the isotropic case (0.090 ± 0.032 cm2/Vs). The structural arrangement of the TIPS-pentacene molecules in relation to the mobility enhancement is described within an anisotropic wetting formalism. Our UT-based approach to the mobility enhancement is easily applicable to different classes of soluble organic field-effect transistors by adjusting the geometrical parameters such as the height, the width, and the periodicity of the UT of an inkjet-printed insulator.
Original language | English |
---|---|
Article number | 193307 |
Journal | Applied Physics Letters |
Volume | 102 |
Issue number | 19 |
DOIs | |
State | Published - May 13 2013 |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation of Korea under the Ministry of Education, Science and Technology of Korea through the Grant No. 2011-0028422. One of the authors (J.E.A.) acknowledges the support from the US Office of Naval Research.
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)