Towards on-site detection of cadmium in human urine

Kiera Gazica, Elizabeth FitzGerald, Gabrielle Dangel, Erin N. Haynes, Jagjit Yadav, Noe T. Alvarez

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Cadmium (Cd) is a non-essential toxic heavy metal. Human exposure to Cd occurs from multiple sources, including diet, tobacco smoke, fossil fuel combustion, and various contaminated sources. This work reports a rapid method for Cd2+ detection in simulated urine samples containing glucose (GLC) and human urine using the electrochemical technique of square wave anodic stripping voltammetry (ASV). Electrochemical techniques for onsite analysis and detection are preferred for their quick response time, application simplicity, inexpensive instrumentation, and potential portability. This approach is a step forward towards Cd2+ detection in biological fluids, despite their composition complexity due to possible interference of its constituents. Application of a simple, well controlled, and uniform carbon nanotube (CNT) thin film generated through spinnable CNT arrays enabled us to increase the surface area of traditional glassy carbon electrodes and made possible the detection of nanomolar concentration of Cd ions in urine samples. This voltammetric technique led to 1.9 nM limit of detection (LOD) in simulated urine, and 5.85 nM (female) and 324 nM (male) LOD in human urine. The developed method would facilitate high throughput screening of human urine samples for assessing Cd exposure in future studies.

Original languageEnglish
Article number113808
JournalJournal of Electroanalytical Chemistry
Volume859
DOIs
StatePublished - Feb 15 2020

Bibliographical note

Publisher Copyright:
© 2020 Elsevier B.V.

ASJC Scopus subject areas

  • Analytical Chemistry
  • General Chemical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Towards on-site detection of cadmium in human urine'. Together they form a unique fingerprint.

Cite this