Translesion synthesis by the UmuC family of DNA polymerases

Z. Wang

Research output: Contribution to journalShort surveypeer-review

86 Scopus citations


Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999-2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, η, ι, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.

Original languageEnglish
Pages (from-to)59-70
Number of pages12
JournalMutation Research - DNA Repair
Issue number2
StatePublished - Jul 12 2001


  • DNA damage
  • DNA polymerase
  • Lesion bypass
  • Translesion synthesis
  • UmuC superfamily

ASJC Scopus subject areas

  • Molecular Biology
  • Toxicology
  • Genetics


Dive into the research topics of 'Translesion synthesis by the UmuC family of DNA polymerases'. Together they form a unique fingerprint.

Cite this