Tumor organoid models in precision medicine and investigating cancer-stromal interactions

Ren Xu, Xiaotao Zhou, Shike Wang, Christine Trinkle

Research output: Contribution to journalReview articlepeer-review

34 Scopus citations

Abstract

Tumor development and progression require chemical and mechanical cues derived from cellular and non-cellular components in the tumor microenvironment, including the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells. Therefore, it is crucial to develop tissue culture models that can mimic in vivo cancer cell-ECM and cancer-stromal cell interactions. Three-dimensional (3D) tumor culture models have been widely utilized to study cancer development and progression. A recent advance in 3D culture is the development of patient-derived tumor organoid (PDO) models from primary human cancer tissue. PDOs maintain the heterogeneity of the primary tumor, which makes them more relevant for identifying therapeutic targets and verifying drug response. Other significant advances include development of 3D co-culture assays to investigate cell-cell interactions and tissue/organ morphogenesis, and microfluidic technology that can be integrated into 3D culture to mimic vasculature and blood flow. These advances offer spatial and temporal insights into cancer cell-stromal interactions and represent novel techniques to study tumor progression and drug response. Here, we summarize the recent progress in 3D culture and tumor organoid models, and discuss future directions and the potential of utilizing these models to study cancer-stromal interactions and direct personalized treatment.

Original languageEnglish
Article number107668
JournalPharmacology and Therapeutics
Volume218
DOIs
StatePublished - Feb 2021

Bibliographical note

Funding Information:
This study was supported by funding from NCI ( 1R01CA207772 , and 1R01CA215095 1 to R.X.).

Publisher Copyright:
© 2020

Keywords

  • Drug screening
  • Extracellular matrix
  • Patient-derived organoid
  • Personalized treatment
  • Three-dimensional tissue culture
  • Tumor microenvironment

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Tumor organoid models in precision medicine and investigating cancer-stromal interactions'. Together they form a unique fingerprint.

Cite this