Tuning between crystallographically aligned carbon nanotube growth and graphene etching

Mohsen Nasseri, D. Patrick Hunley, Abhishek Sundararajan, Mathias J. Boland, Douglas R. Strachan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


The catalytic activity of nanoparticles to form either crystallographically oriented etch tracks or carbon nanotubes on top of few-layer graphene is tuned through the application of a methane feedstock gas. The catalytic activity for these two processes is found to vary at different rates as a function of the amount of applied feedstock gas. These differences provide a window of growth parameters in which nanotubes can be grown on the surface of few-layer graphene without significant formation of etch tracks. Since this surface growth results in nanotubes which can be crystallographically aligned to the underlying graphene layers, this development could lead to improved electrical interfaces between nanotubes and graphene without the deleterious consequences of catalytic etching. Such improved interfaces could prove to be useful in applications benefiting from low interfacial electrical resistances between one-dimensional and two-dimensional materials, such as in supercapacitor applications.

Original languageEnglish
Pages (from-to)958-963
Number of pages6
StatePublished - Oct 2014

Bibliographical note

Funding Information:
The work was supported in part by the National Science Foundation (NSF) through Grant DMR-0805136 , the Kentucky NSF EPSCoR program through award EPS-0814194 , the University of Kentucky (UK) Center for Advanced Materials (CAM) , a grant from the Kentucky Science and Engineering Foundation as per Grant/Award Agreement # KSEF-2928-RDE-016 with the Kentucky Science and Technology Corporation, and a Research Support Grant from the University of Kentucky Office of the Vice President for Research.

ASJC Scopus subject areas

  • Chemistry (all)
  • Materials Science (all)


Dive into the research topics of 'Tuning between crystallographically aligned carbon nanotube growth and graphene etching'. Together they form a unique fingerprint.

Cite this