UAS Inspection Image Enhancement Coupled with Denoise Algorithm Based on Deep Neural Network

Junwon Seo, Euiseok Jeong, James P. Wacker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Unmanned Aerial System (UAS) technologies integrated with image processing algorithms are considered timely and useful for bridge inspections because of improved accessibility, recording ability, and cost-efficiency compared to the conventional inspection approach. The image processing algorithms can improve the ability of the UAS-aided bridge inspections in efficiently identifying and quantifying deterioration. This study was aimed to inspect an in-service single-span precast concrete bridge on a rural roadway in South Dakota using UAS technologies coupled with a Deep Neural Network (DNN) denoise algorithm. During the inspections, Phantom 4 and DJI Matrice 210 UASs recorded several videos for different bridge elements (e.g., girders and decking), and a total of 21,784 inspection images were extracted from the videos with a duration of more than 14 minutes. Deteriorations specific to the bridge elements such as spalling and rust were characterized by performing the DNN-aided image processing algorithm with the extracted inspection images. The DNN allowed for computation and analysis between input and output image data to reduce the noises on the images. Besides, a grayscale image enhancement algorithm was considered to improve the visibility of images by optimizing image contrast settings. With the visibility-improved images, detailed quantification on the detected deterioration per bridge element was carried out using a pixel-based measurement tool. Based upon the study’s results, it was revealed that the UAS technologies with the DNN denoise algorithm were able to successfully characterize and quantify visible deteriorations to the certain bridge elements using pixel-based tools.

Original languageEnglish
Title of host publicationStructural Health Monitoring 2021
Subtitle of host publicationEnabling Next-Generation SHM for Cyber-Physical Systems - Proceedings of the 13th International Workshop on Structural Health Monitoring, IWSHM 2021
EditorsSaman Farhangdoust, Alfredo Guemes, Fu-Kuo Chang
Pages823-830
Number of pages8
ISBN (Electronic)9781605956879
StatePublished - 2021
Event13th International Workshop on Structural Health Monitoring: Enabling Next-Generation SHM for Cyber-Physical Systems, IWSHM 2021 - Stanford, United States
Duration: Mar 15 2022Mar 17 2022

Publication series

NameStructural Health Monitoring 2021: Enabling Next-Generation SHM for Cyber-Physical Systems - Proceedings of the 13th International Workshop on Structural Health Monitoring, IWSHM 2021

Conference

Conference13th International Workshop on Structural Health Monitoring: Enabling Next-Generation SHM for Cyber-Physical Systems, IWSHM 2021
Country/TerritoryUnited States
CityStanford
Period3/15/223/17/22

Bibliographical note

Publisher Copyright:
© 2021 Structural Health Monitoring 2021: Enabling Next-Generation SHM for Cyber-Physical Systems - Proceedings of the 13th International Workshop on Structural Health Monitoring, IWSHM 2021. All rights reserved.

ASJC Scopus subject areas

  • Computer Science Applications
  • Civil and Structural Engineering
  • Safety, Risk, Reliability and Quality
  • Building and Construction

Fingerprint

Dive into the research topics of 'UAS Inspection Image Enhancement Coupled with Denoise Algorithm Based on Deep Neural Network'. Together they form a unique fingerprint.

Cite this