TY - JOUR
T1 - Ubiquitination of human AP-endonuclease 1 (APE1) enhanced by T233E substitution and by CDK5
AU - Busso, Carlos S.
AU - Wedgeworth, Courtney M.
AU - Izumi, Tadahide
PY - 2011/10
Y1 - 2011/10
N2 - Apurinic/apyrimidinic endonuclease-1 (APE1) is a multifunctional DNA repair/gene regulatory protein in mammalian cells, and was recently reported to be phosphorylated at Thr233 by CDK5. We here report that ubiquitination of T233E APE1, a mimicry of phospho-T233 APE1, was markedly increased in multiple cell lines. Expression of CDK5 enhanced monoubiquitination of endogenous APE1. Polyubiquitinated APE1 was decreased when K48R ubiquitin was expressed, suggesting that polyubiquitination was mediated mainly through Lys48 of ubiquitin. The ubiquitination activity of MDM2, consistent in its role for APE1 ubiquitination, was increased for T233E APE1 compared to the wild-type APE1. In mouse embryonic fibroblasts lacking the MDM2 gene, ubiquitination of T233E APE1 was still observed probably because of the decreased degradation activity for monoubiquitinated APE1 and because of backup E3 ligases in the cells. Monoubiquitinated APE1 was present in the nucleus, and analyzing global gene expression profiles with or without induction of a ubiquitin-APE1 fusion gene suggested that monoubiquitination enhanced the gene suppression activity of APE1. These data reveal a delicate balance of ubiquitination and phosphorylation activities that alter the gene regulatory function of APE1.
AB - Apurinic/apyrimidinic endonuclease-1 (APE1) is a multifunctional DNA repair/gene regulatory protein in mammalian cells, and was recently reported to be phosphorylated at Thr233 by CDK5. We here report that ubiquitination of T233E APE1, a mimicry of phospho-T233 APE1, was markedly increased in multiple cell lines. Expression of CDK5 enhanced monoubiquitination of endogenous APE1. Polyubiquitinated APE1 was decreased when K48R ubiquitin was expressed, suggesting that polyubiquitination was mediated mainly through Lys48 of ubiquitin. The ubiquitination activity of MDM2, consistent in its role for APE1 ubiquitination, was increased for T233E APE1 compared to the wild-type APE1. In mouse embryonic fibroblasts lacking the MDM2 gene, ubiquitination of T233E APE1 was still observed probably because of the decreased degradation activity for monoubiquitinated APE1 and because of backup E3 ligases in the cells. Monoubiquitinated APE1 was present in the nucleus, and analyzing global gene expression profiles with or without induction of a ubiquitin-APE1 fusion gene suggested that monoubiquitination enhanced the gene suppression activity of APE1. These data reveal a delicate balance of ubiquitination and phosphorylation activities that alter the gene regulatory function of APE1.
UR - http://www.scopus.com/inward/record.url?scp=80054083892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054083892&partnerID=8YFLogxK
U2 - 10.1093/nar/gkr401
DO - 10.1093/nar/gkr401
M3 - Article
C2 - 21727086
AN - SCOPUS:80054083892
SN - 0305-1048
VL - 39
SP - 8017
EP - 8028
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 18
ER -