Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio

Nanqing Dong, Michael Kampffmeyer, Xiaodan Liang, Zeya Wang, Wei Dai, Eric Xing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

77 Scopus citations

Abstract

The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our system’s prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsGabor Fichtinger, Christos Davatzikos, Carlos Alberola-López, Alejandro F. Frangi, Julia A. Schnabel
Pages544-552
Number of pages9
DOIs
StatePublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11071 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period9/16/189/20/18

Bibliographical note

Publisher Copyright:
© Springer Nature Switzerland AG 2018.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio'. Together they form a unique fingerprint.

Cite this