Use of Alpha-, Beta-Estrogen Receptor as a “New Tool” for Detection of Specific Small Molecule Activity

Samir Kumar Gunjan, Dennis Trent Rogers, Jingxian Zhang, Kil Young Yun, Deane L. Falcone, John Littleton

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Cell-based screening methods for nuclear receptor ligands that use transgenic plant cells expressing a single human nuclear receptor (NR) may have advantages over other eukaryotic systems which express multiple NRs. For example, signal-to-noise ratio might be improved because ligands would be less likely to bind to other NRs and/or less likely to cause confounding functional changes in plant cells. As a first step toward this aim, we have expressed in plants truncated human estrogen receptor (ER) constructs linked to reporters or selective markers such as luciferase, green fluorescent protein (GFP), and hygromycin. A variety of ligands for the ER (including estradiol and known phytoestrogens) have then been tested for their ability to overexpress the linked marker gene(s) which could be measured (luciferase activity), visualized under fluorescent microscopy (GFP activity), or selected on antibiotic-containing media (hygromycin B). Our results show a close association between the effects of ER ligands in the transgenic plant roots and their effects on native ERs in mammalian cells. With the stable expression of an ERalpha-GFP ligand detection system in Arabidopsis thaliana, the estradiol-mediated response in transgenic roots is inhibited by an ER partial agonist (tamoxifen) and an antagonist (fulvestrant) at concentrations relevant to their use in breast cancer. We conclude that it is possible to express human NRs in plants in a form that can report on exogenous or endogenous ER ligands and that these constructs have a pharmacology which is relevant to ligands for the native NRs in human cells.

Original languageEnglish
Pages (from-to)1837-1843
Number of pages7
JournalPlant Molecular Biology Reporter
Issue number6
StatePublished - Dec 1 2015

Bibliographical note

Funding Information:
This work was supported by the National Center for Complementary & Alternative Medicine (NIH grant R42 AT006639 awarded to John Littleton, Naprogenix Inc.).

Publisher Copyright:
© 2015, Springer Science+Business Media New York.


  • Estrogen receptor
  • Genetic switch
  • Hairy root
  • Ligand
  • Transgenic

ASJC Scopus subject areas

  • Molecular Biology
  • Plant Science


Dive into the research topics of 'Use of Alpha-, Beta-Estrogen Receptor as a “New Tool” for Detection of Specific Small Molecule Activity'. Together they form a unique fingerprint.

Cite this