Using nonlinear FE modeling to understand the effect of boundary conditions on precise surfaces of inflatable structures

Jared T. Fulcher, Isaac J. Scherrer, Suzanne Weaver Smith, John R. Baker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Developing ultra-lightweight, deployable, and adaptive systems has become a trend in aerospace and aeronautics over the last two decades. The incorporation of inflatable structures can produce significant advantages in stowed volume to mechanical effectiveness and overall weight for many aerospace systems. Most inflatable systems are designed to precisely control internal or external surfaces, or both, to achieve a desired response or structure. The dynamics and structure of inflatable systems is directly related to the configuration of interfacing boundaries. Designing new inflatable systems will be predicated on developing verified models of structures that comprise inflatable systems. The current efforts are an important foundation for future designs. This paper presents nonlinear finite element (FE) simulations performed to evaluate the effect of various boundary conditions on the geometric precision of a surface representing typical internal/external surfaces commonly incorporated into inflatable structures.

Original languageEnglish
Title of host publication54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
StatePublished - 2013
Event54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Boston, MA, United States
Duration: Apr 8 2013Apr 11 2013

Publication series

NameCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
ISSN (Print)0273-4508

Conference

Conference54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Country/TerritoryUnited States
CityBoston, MA
Period4/8/134/11/13

ASJC Scopus subject areas

  • Architecture
  • General Materials Science
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Using nonlinear FE modeling to understand the effect of boundary conditions on precise surfaces of inflatable structures'. Together they form a unique fingerprint.

Cite this