Abstract
Developing ultra-lightweight, deployable, and adaptive systems has become a trend in aerospace and aeronautics over the last two decades. The incorporation of inflatable structures can produce significant advantages in stowed volume to mechanical effectiveness and overall weight for many aerospace systems. Most inflatable systems are designed to precisely control internal or external surfaces, or both, to achieve a desired response or structure. The dynamics and structure of inflatable systems is directly related to the configuration of interfacing boundaries. Designing new inflatable systems will be predicated on developing verified models of structures that comprise inflatable systems. The current efforts are an important foundation for future designs. This paper presents nonlinear finite element (FE) simulations performed to evaluate the effect of various boundary conditions on the geometric precision of a surface representing typical internal/external surfaces commonly incorporated into inflatable structures.
Original language | English |
---|---|
Title of host publication | 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference |
DOIs | |
State | Published - 2013 |
Event | 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Boston, MA, United States Duration: Apr 8 2013 → Apr 11 2013 |
Publication series
Name | 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference |
---|
Conference
Conference | 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference |
---|---|
Country/Territory | United States |
City | Boston, MA |
Period | 4/8/13 → 4/11/13 |
Bibliographical note
Funding Information:J. T. Fulcher and I. J. Scherrer would like to thank the Mechanical Engineering department of the University of Kentucky for providing oppurtunities to be teaching assistants through this project. J. T. Fulcher would like to recognize the NASA Kentucky Spact Grant program for awarding a summer fellowship in support of this project.
Funding
J. T. Fulcher and I. J. Scherrer would like to thank the Mechanical Engineering department of the University of Kentucky for providing oppurtunities to be teaching assistants through this project. J. T. Fulcher would like to recognize the NASA Kentucky Spact Grant program for awarding a summer fellowship in support of this project.
Funders | Funder number |
---|---|
National Aeronautics and Space Administration |
ASJC Scopus subject areas
- Civil and Structural Engineering
- Mechanics of Materials
- Building and Construction
- Architecture