Abstract
Archetypal analysis is an unsupervised machine learning method that summarizes data using a convex polytope. In its original formulation, for fixed k, the method finds a convex polytope with k vertices, called archetype points, such that the polytope is contained in the convex hull of the data and the mean squared Euclidean distance between the data and the polytope is minimal. In the present work, we consider an alternative formulation of archetypal analysis based on the Wasserstein metric, which we call Wasserstein archetypal analysis (WAA). In one dimension, there exists a unique solution of WAA and, in two dimensions, we prove the existence of a solution, as long as the data distribution is absolutely continuous with respect to the Lebesgue measure. We discuss obstacles to extending our result to higher dimensions and general data distributions. We then introduce an appropriate regularization of the problem, via a Rényi entropy, which allows us to obtain the existence of solutions of the regularized problem for general data distributions, in arbitrary dimensions. We prove a consistency result for the regularized problem, ensuring that if the data are iid samples from a probability measure, then as the number of samples is increased, a subsequence of the archetype points converges to the archetype points for the limiting data distribution, almost surely. Finally, we develop and implement a gradient-based computational approach for the two-dimensional problem, based on the semi-discrete formulation of the Wasserstein metric. Detailed numerical experiments are provided to support our theoretical findings.
Original language | English |
---|---|
Article number | 36 |
Journal | Applied Mathematics and Optimization |
Volume | 90 |
Issue number | 2 |
DOIs | |
State | Published - Oct 2024 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Keywords
- 49Q22
- 62G07
- 62H12
- 65K10
- Archetypal analysis
- Multivariate data summarization
- Optimal transport
- Unsupervised learning
- Wasserstein metric
ASJC Scopus subject areas
- Control and Optimization
- Applied Mathematics