TY - JOUR
T1 - Weak neutral current axial form factor using (ν¯) ν -nucleon scattering and lattice QCD inputs
AU - Sufian, Raza Sabbir
AU - Liu, Keh Fei
AU - Richards, David G.
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We present a determination of the neutral current weak axial charge GAZ(0)=−0.654(3)stat(5)sys using the strange quark axial charge GAs(0) calculated with lattice QCD. We then perform a phenomenological analysis, where we combine the strange quark electromagnetic form factor from lattice QCD with (anti)neutrino-nucleon scattering differential cross section from MiniBooNE experiments in a momentum transfer region 0.24 ≲ Q2 ≲ 0.71 GeV2 to determine the neutral current weak axial form factor GAZ(Q2) in the range of 0 ≲ Q2 ≤ 1 GeV2. This yields a phenomenological value of GAZ(0) = −0.687(89)stat(40)sys. The value of GAZ(0) constrained by the lattice QCD calculation of GAs(0), when compared to its phenomenological determination, provides a significant improvement in precision and accuracy and can be used to provide a constraint on the fit to GAZ(Q2) for Q2> 0. This constrained fit leads to an unambiguous determination of (anti)neutrino-nucleon neutral current elastic scattering differential cross section near Q2 = 0 and can play an important role in numerically isolating nuclear effects in this region. We show a consistent description of GAZ(Q2) obtained from the (anti)neutrino-nucleon scattering cross section data requires a nonzero contribution of the strange quark electromagnetic form factor. We demonstrate the robustness of our analysis by providing a post-diction of the BNL E734 experimental data.
AB - We present a determination of the neutral current weak axial charge GAZ(0)=−0.654(3)stat(5)sys using the strange quark axial charge GAs(0) calculated with lattice QCD. We then perform a phenomenological analysis, where we combine the strange quark electromagnetic form factor from lattice QCD with (anti)neutrino-nucleon scattering differential cross section from MiniBooNE experiments in a momentum transfer region 0.24 ≲ Q2 ≲ 0.71 GeV2 to determine the neutral current weak axial form factor GAZ(Q2) in the range of 0 ≲ Q2 ≤ 1 GeV2. This yields a phenomenological value of GAZ(0) = −0.687(89)stat(40)sys. The value of GAZ(0) constrained by the lattice QCD calculation of GAs(0), when compared to its phenomenological determination, provides a significant improvement in precision and accuracy and can be used to provide a constraint on the fit to GAZ(Q2) for Q2> 0. This constrained fit leads to an unambiguous determination of (anti)neutrino-nucleon neutral current elastic scattering differential cross section near Q2 = 0 and can play an important role in numerically isolating nuclear effects in this region. We show a consistent description of GAZ(Q2) obtained from the (anti)neutrino-nucleon scattering cross section data requires a nonzero contribution of the strange quark electromagnetic form factor. We demonstrate the robustness of our analysis by providing a post-diction of the BNL E734 experimental data.
KW - Lattice QCD
KW - Neutrino Physics
UR - http://www.scopus.com/inward/record.url?scp=85078419915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078419915&partnerID=8YFLogxK
U2 - 10.1007/JHEP01(2020)136
DO - 10.1007/JHEP01(2020)136
M3 - Article
AN - SCOPUS:85078419915
SN - 1126-6708
VL - 2020
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 1
M1 - 136
ER -