TY - JOUR
T1 - Why does the G117H Mutation Considerably Improve the Activity of Human Butyrylcholinesterase against Sarin? Insights from Quantum Mechanical/Molecular Mechanical Free Energy Calculations
AU - Yao, Yuan
AU - Liu, Junjun
AU - Zhan, Chang Guo
PY - 2012/11/6
Y1 - 2012/11/6
N2 - Human butyrylcholinesterase (BChE) is recognized as the most promising bioscavenger for organophosphorus (OP) warfare nerve agents. The G117H mutant of human BChE has been identified as a potential catalytic bioscavenger with a remarkably improved activity against OP nerve agents such as sarin, but it still does not satisfy the clinical use. For further design of the higher-activity mutants against OP nerve agents, it is essential to understand how the G117H mutation improves the activity. The reaction mechanisms and the free energy profiles for spontaneous reactivation of wild-type BChE and its G117H mutant phosphorylated by sarin have been explored, in this study, by performing first-principles quantum mechanical/molecular mechanical free energy calculations, and the remarkable role of the G117H mutation on the activity has been elucidated. For both the wild-type and G117H mutant enzymes, H438 acts as a general base to initiate the spontaneous reactivation that consists of two reaction steps: the nucleophilic attack at the phosphorus by a water molecule and decomposition of the pentacoordinated phosphorus intermediate. The calculated overall free energy barriers, i.e., 30.2 and 23.9 kcal/mol for the wild type and G117H mutant, respectively, are in good agreement with available experimental kinetic data. On the basis of the calculated results, the mutated residue (H117 in the G117H mutant) cannot initiate the spontaneous reactivation as a general base. Instead, it skews the oxyanion hole and makes the phosphorus more open to the nucleophilic water molecule, resulting in a remarkable change in the rate-determining step and significantly improved catalytic activity of human BChE.
AB - Human butyrylcholinesterase (BChE) is recognized as the most promising bioscavenger for organophosphorus (OP) warfare nerve agents. The G117H mutant of human BChE has been identified as a potential catalytic bioscavenger with a remarkably improved activity against OP nerve agents such as sarin, but it still does not satisfy the clinical use. For further design of the higher-activity mutants against OP nerve agents, it is essential to understand how the G117H mutation improves the activity. The reaction mechanisms and the free energy profiles for spontaneous reactivation of wild-type BChE and its G117H mutant phosphorylated by sarin have been explored, in this study, by performing first-principles quantum mechanical/molecular mechanical free energy calculations, and the remarkable role of the G117H mutation on the activity has been elucidated. For both the wild-type and G117H mutant enzymes, H438 acts as a general base to initiate the spontaneous reactivation that consists of two reaction steps: the nucleophilic attack at the phosphorus by a water molecule and decomposition of the pentacoordinated phosphorus intermediate. The calculated overall free energy barriers, i.e., 30.2 and 23.9 kcal/mol for the wild type and G117H mutant, respectively, are in good agreement with available experimental kinetic data. On the basis of the calculated results, the mutated residue (H117 in the G117H mutant) cannot initiate the spontaneous reactivation as a general base. Instead, it skews the oxyanion hole and makes the phosphorus more open to the nucleophilic water molecule, resulting in a remarkable change in the rate-determining step and significantly improved catalytic activity of human BChE.
UR - http://www.scopus.com/inward/record.url?scp=84868582239&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868582239&partnerID=8YFLogxK
U2 - 10.1021/bi3009246
DO - 10.1021/bi3009246
M3 - Article
C2 - 23092211
AN - SCOPUS:84868582239
SN - 0006-2960
VL - 51
SP - 8980
EP - 8992
JO - Biochemistry
JF - Biochemistry
IS - 44
ER -