Winding factors and magnetic fields in permanent magnet brushless machines with concentrated windings and modular stator cores

Greg Heins, Dan Ionel, Mark Thiele

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Removing some sections of the stator yoke in a permanent magnet brushless machine can be beneficial for reducing punching waste and simplifying motor manufacture. However in some cases, restricting the possible flux paths in this way will have a detrimental impact on the torque and air-gap harmonics. This paper discusses the potential implications of modular stator core arrangements and presents the air-gap flux density harmonics and winding factors for potential slot/pole combinations. FEA simulations are presented to support the analytical calculations. The analysis suggests that the performance reduction from using a modular stator is minimal when the number of slots and poles are similar but drops off substantially when this is not the case. A modular core stator will increase the MMF sub-harmonics due to the magnet field but can reduce the sub-harmonics due to the armature if a single layer winding is used. The effect of slotting is very similar for a modular and conventional core machine and FEA results match previously published analytical analyses.

Original languageEnglish
Title of host publication2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013
Pages5048-5055
Number of pages8
DOIs
StatePublished - 2013
Event5th Annual IEEE Energy Conversion Congress and Exhibition, ECCE 2013 - Denver, CO, United States
Duration: Sep 15 2013Sep 19 2013

Publication series

Name2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013

Conference

Conference5th Annual IEEE Energy Conversion Congress and Exhibition, ECCE 2013
Country/TerritoryUnited States
CityDenver, CO
Period9/15/139/19/13

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Winding factors and magnetic fields in permanent magnet brushless machines with concentrated windings and modular stator cores'. Together they form a unique fingerprint.

Cite this