Zebrafish anterior segment mesenchyme progenitors are defined by function of tfap2a but not sox10

Oliver Vöcking, K. Van Der Meulen, M. K. Patel, J. K. Famulski

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The anterior segment is a critical component of the visual system. Developing independent of the retina, the AS relies partially on cranial neural crest cells (cNCC) as its earliest progenitors. The cNCCs are thought to first adopt a periocular mesenchyme (POM) fate and subsequently target to the AS upon formation of the rudimentary retina. AS targeted POM is termed anterior segment mesenchyme (ASM). However, it remains unknown when and how the switch from cNCC to POM or POM to ASM takes place. As such, we sought to visualize the timing of these transitions and identify the regulators of this process using the zebrafish embryo model. Using two color fluorescence in situ hybridization, we tracked cNCC and ASM target gene expression from 12 to 24hpf. In doing so, we identified a tfap2a and foxC1a co-expression at 16hpf, identifying the earliest ASM to arrive at the AS. Interestingly, expression of two other key regulators of NCC, foxD3 and sox10 was not associated with early ASM. Functional analysis of tfap2a, foxD3 and sox10 revealed that tfap2a and foxD3 are both critical regulators of ASM specification and AS formation while sox10 was dispensable for either specification or development of the AS. Using genetic knockout lines, we show that in the absence of tfap2a or foxD3 function ASM cells are not specified, and subsequently the AS is malformed. Conversely, sox10 genetic mutants or CRISPR Cas9 injected embryos displayed no defects in ASM specification, migration or the AS. Lastly, using transcriptomic analysis, we show that GFP + cNCCs derived from Tg [foxD3:GFP] and Tg [foxC1b:GFP] share expression profiles consistent with ASM development whereas cNCCs isolated from Tg [sox10:GFP] exhibit expression profiles associated with vasculogenesis, muscle function and pigmentation. Taken together, we propose that the earliest stage of anterior segment mesenchyme (ASM) specification in zebrafish is approximately 16hpf and involves tfap2a/foxC1a positive cNCCs.

Original languageEnglish
Pages (from-to)32-42
Number of pages11
JournalDifferentiation
Volume130
DOIs
StatePublished - Mar 1 2023

Bibliographical note

Funding Information:
We thank Dr. James Lister for his generosity with transgenic and mutant zebrafish lines. We also thank Dr. Jeramiah Smith for his assistance with bioinformatics analysis of RNAseq data and Dr. Ann Morris for use of the cryo-microtome. Lastly, we acknowledge the excellent zebrafish husbandry work of Brandi Bolton. This work was supported by the NIH-NEI grant R01EY027805-01A1 .

Publisher Copyright:
© 2022 International Society of Differentiation

Keywords

  • Anterior segment
  • Cornea
  • Neural crest
  • Periocular mesenchyme
  • Zebrafish
  • tfap2

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Zebrafish anterior segment mesenchyme progenitors are defined by function of tfap2a but not sox10'. Together they form a unique fingerprint.

Cite this