A High-Order Compact Boundary Value Method for Solving One-Dimensional Heat Equations

Haiwei Sun, Jun Zhang

Producción científica: Articlerevisión exhaustiva

36 Citas (Scopus)

Resumen

We combine fourth-order boundary value methods (BVMs) for discretizing the temporal variable with fourth-order compact difference scheme for discretizing the spatial variable to solve one-dimensional heat equations. This class of new compact difference schemes achieve fourth-order accuracy in both temporal and spatial variables and are unconditionally stable due to the favorable stability property of BVMs. Numerical results are presented to demonstrate the accuracy and efficiency of the new compact difference scheme, compared to the standard second-order Crank-Nicolson scheme.

Idioma originalEnglish
Páginas (desde-hasta)846-857
Número de páginas12
PublicaciónNumerical Methods for Partial Differential Equations
Volumen19
N.º6
DOI
EstadoPublished - nov 2003

ASJC Scopus subject areas

  • Analysis
  • Numerical Analysis
  • Computational Mathematics
  • Applied Mathematics

Huella

Profundice en los temas de investigación de 'A High-Order Compact Boundary Value Method for Solving One-Dimensional Heat Equations'. En conjunto forman una huella única.

Citar esto