A spectral approach to pattern-avoiding permutations

Producción científica: Paperrevisión exhaustiva

3 Citas (Scopus)

Resumen

We study the number of permutations in the symmetric group on n elements that avoid consecutive patterns S. We show that the spectrum of an associated integral operator on the space L 2[0, 1] m determines the asymptotic behavior of such permutations. Moreover, using an operator version of the classical Frobenius-Perron theorem due to Kreǐn and Rutman, we prove asymptotic results for large classes of patterns S. This extends previously known results of Elizalde.

Idioma originalEnglish
Páginas457-468
Número de páginas12
EstadoPublished - 2006
Evento18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006 - San Diego, CA, United States
Duración: jun 19 2006jun 23 2006

Conference

Conference18th Annual International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2006
País/TerritorioUnited States
CiudadSan Diego, CA
Período6/19/066/23/06

ASJC Scopus subject areas

  • Algebra and Number Theory

Huella

Profundice en los temas de investigación de 'A spectral approach to pattern-avoiding permutations'. En conjunto forman una huella única.

Citar esto