Boundary value problems for higher order parabolic equations

Russell M. Brown, H. U. Wei

Producción científica: Articlerevisión exhaustiva

3 Citas (Scopus)

Resumen

We consider a constant coefficient parabolic equation of order 2m and establish the existence of solutions to the initial-Dirichlet problem in cylindrical domains. The lateral data is taken from spaces of Whitney arrays which essentially require that the normal derivatives up to order rn - 1 lie in L2 with respect to surface measure. In addition, a regularity result for the solution is obtained if the data has one more derivative. The boundary of the space domain is given by the graph of a Lipschitz function. This provides an extension of the methods of Pipher and Verchota on elliptic equations to parabolic equations.

Idioma originalEnglish
Páginas (desde-hasta)809-838
Número de páginas30
PublicaciónTransactions of the American Mathematical Society
Volumen353
N.º2
DOI
EstadoPublished - 2001

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Huella

Profundice en los temas de investigación de 'Boundary value problems for higher order parabolic equations'. En conjunto forman una huella única.

Citar esto