Compressive strain-induced metal-insulator transition in orthorhombic SrIrO3 thin films

John H. Gruenewald, John Nichols, Jasminka Terzic, Gang Cao, Joseph W. Brill, Sung S.Ambrose Seo

Producción científica: Articlerevisión exhaustiva

80 Citas (Scopus)

Resumen

Orthorhombic SrIrO3 is a correlated metal whose electronic properties are highly susceptible to external perturbations due to the comparable interactions of spin-orbit interaction and electronic correlation. We have investigated the electronic properties of epitaxial orthorhombic SrIrO3 thin-films under compressive strain using transport measurements, optical absorption spectra, and magnetoresistance. The metastable, orthorhombic SrIrO3 thin-films are synthesized on various substrates using an epi-stabilization technique. We have observed that as in-plane lattice compression is increased, the dc-resistivity (ρ) of the thin films increases by a few orders of magnitude, and the dρ/dT changes from positive to negative values. However, optical absorption spectra show Drude-like, metallic responses without an optical gap opening for all compressively strained thin films. Transport measurements under magnetic fields show negative magnetoresistance at low temperature for compressively strained thin-films. Our results suggest that weak localization is responsible for the strain-induced metal-insulator transition for the orthorhombic SrIrO3 thin-films.

Idioma originalEnglish
Páginas (desde-hasta)2491-2496
Número de páginas6
PublicaciónJournal of Materials Research
Volumen29
N.º21
DOI
EstadoPublished - sept 8 2014

Nota bibliográfica

Publisher Copyright:
© Materials Research Society 2014.

Financiación

FinanciadoresNúmero del financiador
National Science Foundation (NSF)EPS-0814194

    ASJC Scopus subject areas

    • General Materials Science
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Huella

    Profundice en los temas de investigación de 'Compressive strain-induced metal-insulator transition in orthorhombic SrIrO3 thin films'. En conjunto forman una huella única.

    Citar esto