Convergence of set-valued mappings: Equi-outer semicontinuity

Adib Bagh, Roger J.B. Wets

Producción científica: Articlerevisión exhaustiva

15 Citas (Scopus)

Resumen

The concept of equi-outer semicontitiuity allows us to relate the pointwise and the graphical convergence of set-valued-mappings. One of the main results is a compactness criterion that extends the classical Arzelà-Ascolì theorem for continuous functions to this new setting; it also leads to the exploration of the notion of continuous convergence. Equi-lower semicontinuity of functions is related to the outer semicontinuity of epigraphical mappings. Finally, some examples involving set-valued mappings are re-examined in terms of the concepts introduced here.

Idioma originalEnglish
Páginas (desde-hasta)333-360
Número de páginas28
PublicaciónSet-Valued Analysis
Volumen4
N.º4
DOI
EstadoPublished - 1996

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Huella

Profundice en los temas de investigación de 'Convergence of set-valued mappings: Equi-outer semicontinuity'. En conjunto forman una huella única.

Citar esto