Decompositions of Ehrhart h*-polynomials for rational polytopes

Matthias Beck, Benjamin Braun, Andrés R. Vindas-Meléndez

Producción científica: Articlerevisión exhaustiva

Resumen

The Ehrhart quasipolynomial of a rational polytope P encodes the number of integer lattice points in dilates of P, and the h*-polynomial of P is the numerator of the accompanying generating function. We provide two decomposition formulas for the h*-polynomial of a rational polytope. The first decomposition generalizes a theorem of Betke and McMullen for lattice polytopes. We use our rational Betke–McMullen formula to provide a novel proof of Stanley’s Monotonicity Theorem for the h*-polynomial of a rational polytope. The second decomposition generalizes a result of Stapledon, which we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by the coefficients of the h*-polynomial for lattice polytopes. Lastly, we apply our results to rational polytopes containing the origin whose duals are lattice polytopes.

Idioma originalEnglish
Número de artículo#38
PublicaciónSeminaire Lotharingien de Combinatoire
N.º85
EstadoPublished - 2021

Nota bibliográfica

Publisher Copyright:
© 2021, Seminaire Lotharingien de Combinatoire. All Rights Reserved.

Financiación

*[email protected]. Andrés R. Vindas-Meléndez was partially supported by National Science Foundation Graduate Research Fellowship DGE-1247392.

FinanciadoresNúmero del financiador
National Science Foundation (NSF)DGE-1247392

    ASJC Scopus subject areas

    • Discrete Mathematics and Combinatorics

    Huella

    Profundice en los temas de investigación de 'Decompositions of Ehrhart h*-polynomials for rational polytopes'. En conjunto forman una huella única.

    Citar esto