Defense-PointNet: Protecting PointNet Against Adversarial Attacks

Yu Zhang, Gongbo Liang, Tawfiq Salem, Nathan Jacobs

Producción científica: Conference contributionrevisión exhaustiva

35 Citas (Scopus)

Resumen

Despite remarkable performance across a broad range of tasks, neural networks have been shown to be vulnerable to adversarial attacks. Many works focus on adversarial attacks and defenses on 2D images, but few focus on 3D point clouds. In this paper, our goal is to enhance the adversarial robustness of PointNet, which is one of the most widely used models for 3D point clouds. We apply the fast gradient sign attack method (FGSM) on 3D point clouds and find that FGSM can be used to generate not only adversarial images but also adversarial point clouds. To minimize the vulnerability of PointNet to adversarial attacks, we propose Defense-PointNet. We compare our model with two baseline approaches and show that Defense-PointNet significantly improves the robustness of the network against adversarial samples.

Idioma originalEnglish
Título de la publicación alojadaProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditoresChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
Páginas5654-5660
Número de páginas7
ISBN (versión digital)9781728108582
DOI
EstadoPublished - dic 2019
Evento2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duración: dic 9 2019dic 12 2019

Serie de la publicación

NombreProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
País/TerritorioUnited States
CiudadLos Angeles
Período12/9/1912/12/19

Nota bibliográfica

Publisher Copyright:
© 2019 IEEE.

Financiación

We gratefully acknowledge the support of NSF CAREER (IIS-1553116).

FinanciadoresNúmero del financiador
National Science Foundation Arctic Social Science Program1553116, IIS-1553116

    ASJC Scopus subject areas

    • Artificial Intelligence
    • Computer Networks and Communications
    • Information Systems
    • Information Systems and Management

    Huella

    Profundice en los temas de investigación de 'Defense-PointNet: Protecting PointNet Against Adversarial Attacks'. En conjunto forman una huella única.

    Citar esto