Energy-Efficient Autonomous Driving Using Cognitive Driver Behavioral Models and Reinforcement Learning

Huayi Li, Nan Li, Ilya Kolmanovsky, Anouck Girard

Producción científica: Chapterrevisión exhaustiva

1 Cita (Scopus)

Resumen

Autonomous driving technologies are expected to not only improve mobility and road safety but also bring energy efficiency benefits. In the foreseeable future, autonomous vehicles (AVs) will operate on roads shared with human-driven vehicles. To maintain safety and liveness while simultaneously minimizing energy consumption, the AV planning and decision-making process should account for interactions between the autonomous ego vehicle and surrounding human-driven vehicles. In this chapter, we describe a framework for developing energy-efficient autonomous driving policies on shared roads by exploiting human-driver behavior modeling based on cognitive hierarchy theory and reinforcement learning.

Idioma originalEnglish
Título de la publicación alojadaLecture Notes in Intelligent Transportation and Infrastructure
Páginas283-305
Número de páginas23
DOI
EstadoPublished - 2023

Serie de la publicación

NombreLecture Notes in Intelligent Transportation and Infrastructure
VolumenPart F1376
ISSN (versión impresa)2523-3440
ISSN (versión digital)2523-3459

Nota bibliográfica

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Financiación

Acknowledgements This research was supported by Mcity, University of Michigan. This research was also supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.

FinanciadoresNúmero del financiador
Michigan Retirement Research Center, University of Michigan

    ASJC Scopus subject areas

    • Computer Science Applications
    • Automotive Engineering
    • Control and Systems Engineering
    • Transportation

    Huella

    Profundice en los temas de investigación de 'Energy-Efficient Autonomous Driving Using Cognitive Driver Behavioral Models and Reinforcement Learning'. En conjunto forman una huella única.

    Citar esto