Extremal problems for the Möbius function in the face lattice of the n-octahedron

Producción científica: Articlerevisión exhaustiva

13 Citas (Scopus)

Resumen

We study extremal problems concerning the Möbius function μ of certain families of subsets from On, the lattice of faces of the n-dimensional octahedron. For lower order ideals F from On, |μ(F)| attains a unique maximum by taking F to be the lower two-thirds of the ranks of the poset. Stanley showed that the coefficients of the cd-index for face lattices of convex polytopes are non-negative. We verify an observation that this result implies that the Möbius function is maximized over arbitrary rank-selections from these lattices by taking their odd or even ranks. Using recurrences by Purtill for the cd-index of Bn and On, we demonstrate that the alternating ranks are the only extremal configuration for these two face latties.

Idioma originalEnglish
Páginas (desde-hasta)361-380
Número de páginas20
PublicaciónDiscrete Mathematics
Volumen139
N.º1-3
DOI
EstadoPublished - may 24 1995

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Huella

Profundice en los temas de investigación de 'Extremal problems for the Möbius function in the face lattice of the n-octahedron'. En conjunto forman una huella única.

Citar esto