Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo

Amro Ilaiwy, Miao Liu, Traci L. Parry, James R. Bain, Christopher B. Newgard, Jonathan C. Schisler, Michael J. Muehlbauer, Florin Despa, Monte S. Willis

Producción científica: Articlerevisión exhaustiva

20 Citas (Scopus)

Resumen

Introduction: Chronic hypersecretion of the 37 amino acid amylin is common in type 2 diabetics (T2D). Recent studies implicate human amylin aggregates cause proteotoxicity (cell death induced by misfolded proteins) in both the brain and the heart. Objectives: Identify systemic mechanisms/markers by which human amylin associated with cardiac and brain defects might be identified. Methods: We investigated the metabolic consequences of amyloidogenic and cytotoxic amylin oligomers in heart, brain, liver, and plasma using non-targeted metabolomics analysis in a rat model expressing pancreatic human amylin (HIP model). Results: Four metabolites were significantly different in three or more of the four compartments (heart, brain, liver, and plasma) in HIP rats. When compared to a T2D rat model, HIP hearts uniquely had significant DECREASES in five amino acids (lysine, alanine, tyrosine, phenylalanine, serine), with phenylalanine decreased across all four tissues investigated, including plasma. In contrast, significantly INCREASED circulating phenylalanine is reported in diabetics in multiple recent studies. Conclusion: DECREASED phenylalanine may serve as a unique marker of cardiac and brain dysfunction due to hyperamylinemia that can be differentiated from alterations in T2D in the plasma. While the deficiency in phenylalanine was seen across tissues including plasma and could be monitored, reduced tyrosine was seen only in the brain. The 50 % reduction in phenylalanine and tyrosine in HIP brains is significant given their role in supporting brain chemistry as a precursor for catecholamines (dopamine, norepinephrine, epinephrine), which may contribute to the increased morbidity and mortality in diabetics at a multi-system level beyond the effects on glucose metabolism.

Idioma originalEnglish
Número de artículo95
PublicaciónMetabolomics
Volumen12
N.º5
DOI
EstadoPublished - may 1 2016

Nota bibliográfica

Publisher Copyright:
© 2016, Springer Science+Business Media New York.

Financiación

This work was supported by the National Institutes of Health (R01HL104129 to M.W.; R01HL118474 to F.D.), a Jefferson-Pilot Corporation Fellowship (to M.W.), National Science Foundation (CBET 1357600 to F.D.), Alzheimer’s Association (VMF-15-363458 to FD) and the Leducq Foundation (to M.W.).

FinanciadoresNúmero del financiador
National Science Foundation Arctic Social Science ProgramCBET 1357600
National Institutes of Health (NIH)R01HL104129, R01HL118474
Directorate for Computer and Information Science and Engineering1357600
Alzheimer's AssociationVMF-15-363458
Fondation Leducq

    ASJC Scopus subject areas

    • Endocrinology, Diabetes and Metabolism
    • Biochemistry
    • Clinical Biochemistry

    Huella

    Profundice en los temas de investigación de 'Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo'. En conjunto forman una huella única.

    Citar esto