Hydrogenation of Carbon Dioxide over K-Promoted FeCo Bimetallic Catalysts Prepared from Mixed Metal Oxalates

Muthu Kumaran Gnanamani, Hussein H. Hamdeh, Gary Jacobs, Wilson D. Shafer, Shelley D. Hopps, Gerald A. Thomas, Burtron H. Davis

Producción científica: Articlerevisión exhaustiva

38 Citas (Scopus)

Resumen

The hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared by sequential oxalate decomposition and carburization of FeCo with CO was studied in a fixed-bed reactor at 240 °C and 1.2 MPa. The initial CO2 conversion was found to be dependent on K loading, whereas both unpromoted and K-promoted FeCo catalysts (except 90Fe10Co3.0K) exhibited similar levels of CO2 conversion after a few hours of time on stream. A decarburization study on freshly activated and used FeCo suggests that potassium increases the stability of iron carbides and graphitic carbon under a reducing atmosphere. Also, K addition tends to decrease the hydrogenation function of FeCo bimetallic catalysts and, thus, controls product selectivity. Under similar CO2 conversions, potassium enhanced acetic acid formation while suppressing ethanol production, which indicates that a common intermediate might be responsible for the changes observed with C2 oxygenates.

Idioma originalEnglish
Páginas (desde-hasta)1303-1312
Número de páginas10
PublicaciónChemCatChem
Volumen9
N.º7
DOI
EstadoPublished - abr 7 2017

Nota bibliográfica

Publisher Copyright:
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ASJC Scopus subject areas

  • Catalysis
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Huella

Profundice en los temas de investigación de 'Hydrogenation of Carbon Dioxide over K-Promoted FeCo Bimetallic Catalysts Prepared from Mixed Metal Oxalates'. En conjunto forman una huella única.

Citar esto