Identifying High Health Care Utilizers Using Post-Regression Residual Analysis of Health Expenditures from a State Medicaid Program

Chengliang Yang, Chris Delcher, Elizabeth Shenkman, Sanjay Ranka

Producción científica: Articlerevisión exhaustiva

5 Citas (Scopus)

Resumen

We propose an approach to identify high health care utilizers using residuals from a regression-based health care utilization adjustment model to analyze the variations in health care expenditures. Using a large administrative claims dataset from a state public insurance program, we show that the residuals can identify a group of patients with high residuals whose demographics and categorization of comorbidities are similar to other patients but who have a significant amount of unexplained health care utilization. Additionally, these high utilizers persist from year to year. Correlation analysis with 3M™Potentially Preventable Events (PPE) software shows that a portion of this utilization may be preventable. In addition, these residuals can be useful in predicting future PPEs and hence may be useful in identifying impactable high utilizers.

Idioma originalEnglish
Páginas (desde-hasta)1848-1857
Número de páginas10
PublicaciónAMIA ... Annual Symposium proceedings. AMIA Symposium
Volumen2017
EstadoPublished - 2017

Financiación

FinanciadoresNúmero del financiador
National Institute on AgingP30AG028740

    ASJC Scopus subject areas

    • General Medicine

    Huella

    Profundice en los temas de investigación de 'Identifying High Health Care Utilizers Using Post-Regression Residual Analysis of Health Expenditures from a State Medicaid Program'. En conjunto forman una huella única.

    Citar esto