Linear upper bounds for local Ramsey numbers

Miroslaw Truszczynski, Zsolt Tuza

Producción científica: Articlerevisión exhaustiva

24 Citas (Scopus)

Resumen

A coloring of the edges of a graph is called a local k-coloring if every vertex is incident to edges of at most k distinct colors. For a given graph G, the local Ramsey number, rlock(G), is the smallest integer n such that any local k-coloring of Kn, (the complete graph on n vertices), contains a monochromatic copy of G. The following conjecture of Gyárfás et al. is proved here: for each positive integer k there exists a constant c = c(k) such that rlock(G) ≤ crk(G), for every connected grraph G (where rk(G) is the usual Ramsey number for k colors). Possible generalizations for hypergraphs are considered.

Idioma originalEnglish
Páginas (desde-hasta)67-73
Número de páginas7
PublicaciónGraphs and Combinatorics
Volumen3
N.º1
DOI
EstadoPublished - dic 1987

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Huella

Profundice en los temas de investigación de 'Linear upper bounds for local Ramsey numbers'. En conjunto forman una huella única.

Citar esto