Missing data augmentation for bayesian exponential random multi-graph models

Robert W. Krause, Alberto Caimo

Producción científica: Chapterrevisión exhaustiva

4 Citas (Scopus)

Resumen

In this paper we present an estimation algorithm for Bayesian exponential random multi-graphs (BERmGMs) under missing network data. Social actors are often connected with more than one type of relation, thus forming a multiplex network. It is important to consider these multiplex structures simultaneously when analyzing a multiplex network. The importance of proper models of multiplex network structures is even more pronounced under the issue of missing network data. The proposed algorithm is able to estimate BERmGMs under missing data and can be used to obtain proper multiple imputations for multiplex network structures. It is an extension of Bayesian exponential random graphs (BERGMs) as implemented in the Bergm package in R. We demonstrate the algorithm on a well-known example, with and without artificially simulated missing data.

Idioma originalEnglish
Título de la publicación alojadaSpringer Proceedings in Complexity
Páginas63-72
Número de páginas10
DOI
EstadoPublished - 2019

Serie de la publicación

NombreSpringer Proceedings in Complexity
ISSN (versión impresa)2213-8684
ISSN (versión digital)2213-8692

Nota bibliográfica

Publisher Copyright:
© Springer Nature Switzerland AG 2019.

Financiación

We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster.

FinanciadoresNúmero del financiador
Center for Information Technology
University of Groningen: Rijksuniversiteit Groningen

    ASJC Scopus subject areas

    • Applied Mathematics
    • Modeling and Simulation
    • Computer Science Applications

    Huella

    Profundice en los temas de investigación de 'Missing data augmentation for bayesian exponential random multi-graph models'. En conjunto forman una huella única.

    Citar esto