Resumen
In this paper we present an estimation algorithm for Bayesian exponential random multi-graphs (BERmGMs) under missing network data. Social actors are often connected with more than one type of relation, thus forming a multiplex network. It is important to consider these multiplex structures simultaneously when analyzing a multiplex network. The importance of proper models of multiplex network structures is even more pronounced under the issue of missing network data. The proposed algorithm is able to estimate BERmGMs under missing data and can be used to obtain proper multiple imputations for multiplex network structures. It is an extension of Bayesian exponential random graphs (BERGMs) as implemented in the Bergm package in R. We demonstrate the algorithm on a well-known example, with and without artificially simulated missing data.
| Idioma original | English |
|---|---|
| Título de la publicación alojada | Springer Proceedings in Complexity |
| Páginas | 63-72 |
| Número de páginas | 10 |
| DOI | |
| Estado | Published - 2019 |
Serie de la publicación
| Nombre | Springer Proceedings in Complexity |
|---|---|
| ISSN (versión impresa) | 2213-8684 |
| ISSN (versión digital) | 2213-8692 |
Nota bibliográfica
Publisher Copyright:© Springer Nature Switzerland AG 2019.
Financiación
We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster.
| Financiadores | Número del financiador |
|---|---|
| Center for Information Technology | |
| University of Groningen: Rijksuniversiteit Groningen |
ASJC Scopus subject areas
- Applied Mathematics
- Modeling and Simulation
- Computer Science Applications