Observability, controllability and local reducibility of linear codes on graphs

G. David Forney, Heide Gluesing-Luerssen

Producción científica: Conference contributionrevisión exhaustiva

Resumen

This paper is concerned with the local reducibility properties of linear realizations of codes on finite graphs. Trimness and properness are dual properties of constraint codes. A linear realization is locally reducible if any constraint code is not both trim and proper. On a finite cycle-free graph, a linear realization is minimal if and only if every constraint code is both trim and proper. A linear realization is called observable if it is one-to-one, and controllable if all constraints are independent. Observability and controllability are dual properties. An unobservable or uncontrollable realization is locally reducible. A parity-check realization is uncontrollable if and only if it has redundant parity checks. A tail-biting trellis realization is uncontrollable if and only if its trajectories partition into disconnected subrealizations. General graphical realizations do not share this property.

Idioma originalEnglish
Título de la publicación alojada2012 IEEE International Symposium on Information Theory Proceedings, ISIT 2012
Páginas641-645
Número de páginas5
DOI
EstadoPublished - 2012
Evento2012 IEEE International Symposium on Information Theory, ISIT 2012 - Cambridge, MA, United States
Duración: jul 1 2012jul 6 2012

Serie de la publicación

NombreIEEE International Symposium on Information Theory - Proceedings
ISSN (versión impresa)2157-8105

Conference

Conference2012 IEEE International Symposium on Information Theory, ISIT 2012
País/TerritorioUnited States
CiudadCambridge, MA
Período7/1/127/6/12

Financiación

FinanciadoresNúmero del financiador
U.S. Department of Energy Chinese Academy of Sciences Guangzhou Municipal Science and Technology Project Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment National Science Foundation National Energy Research Scientific Computing Center National Natural Science Foundation of China0908379

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • Information Systems
    • Modeling and Simulation
    • Applied Mathematics

    Huella

    Profundice en los temas de investigación de 'Observability, controllability and local reducibility of linear codes on graphs'. En conjunto forman una huella única.

    Citar esto