Orthogonal Analysis of Multisensor Data Fusion for Improved Quality Control

Peng Wang, Zhaoyan Fan, David O. Kazmer, Robert X. Gao

Producción científica: Articlerevisión exhaustiva

15 Citas (Scopus)

Resumen

Multisensor data fusion can enable comprehensive representation of manufacturing processes, thereby contributing to improved part quality control. The effectiveness of data fusion depends on the nature of the input data. This paper investigates orthogonality as a measure for the effectiveness of data fusion, with the goal to maximize data correlation with part quality toward manufacturing process control. By decomposing sensor data into a lifted-dimensional space, contribution from each of the sensors for quantifying part quality is revealed by the corresponding projection vector. Performance evaluation using data measured from polymer injection molding confirmed the effectiveness of the developed technique.

Idioma originalEnglish
Número de artículo101008
PublicaciónJournal of Manufacturing Science and Engineering, Transactions of the ASME
Volumen139
N.º10
DOI
EstadoPublished - oct 1 2017

Nota bibliográfica

Publisher Copyright:
© 2017 by ASME.

Financiación

The support for this research by the National Science Foundation under Grant No. CMMI-1000816/1000551 is greatly appreciated.

FinanciadoresNúmero del financiador
National Science Foundation (NSF)

    ASJC Scopus subject areas

    • Control and Systems Engineering
    • Mechanical Engineering
    • Computer Science Applications
    • Industrial and Manufacturing Engineering

    Huella

    Profundice en los temas de investigación de 'Orthogonal Analysis of Multisensor Data Fusion for Improved Quality Control'. En conjunto forman una huella única.

    Citar esto