Resumen
For a family of second-order elliptic operators with rapidly oscillating periodic coefficients, we study the asymptotic behavior of the Green and Neumann functions, using Dirichlet and Neumann correctors. As a result we obtain asymptotic expansions of Poisson kernels and the Dirichlet-to-Neumann maps as well as optimal convergence rates in Lp and W1,p for solutions with Dirichlet or Neumann boundary conditions.
| Idioma original | English |
|---|---|
| Páginas (desde-hasta) | 1219-1262 |
| Número de páginas | 44 |
| Publicación | Communications on Pure and Applied Mathematics |
| Volumen | 67 |
| N.º | 8 |
| DOI | |
| Estado | Published - ago 2014 |
Financiación
| Financiadores | Número del financiador |
|---|---|
| U.S. Department of Energy Chinese Academy of Sciences Guangzhou Municipal Science and Technology Project Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment National Science Foundation National Energy Research Scientific Computing Center National Natural Science Foundation of China | 0700517 |
| U.S. Department of Energy Chinese Academy of Sciences Guangzhou Municipal Science and Technology Project Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment National Science Foundation National Energy Research Scientific Computing Center National Natural Science Foundation of China | |
| U.S. Department of Energy Chinese Academy of Sciences Guangzhou Municipal Science and Technology Project Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment National Science Foundation National Energy Research Scientific Computing Center National Natural Science Foundation of China | DMS-0855294., DMS-0968472, DMS-0700517 |
| U.S. Department of Energy Chinese Academy of Sciences Guangzhou Municipal Science and Technology Project Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment National Science Foundation National Energy Research Scientific Computing Center National Natural Science Foundation of China |
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics