Regression diagnostics for rank-based methods

Joseph W. McKean, Simon J. Sheather, Thomas P. Hettmansperger

Producción científica: Articlerevisión exhaustiva

45 Citas (Scopus)

Resumen

Residual plots and diagnostic techniques have become important tools in examining the least squares fit of a linear model. In this article we explore the properties of the residuals from a rank-based fit of the model. We present diagnostic techniques that detect outlying cases and cases that have an influential effect on the rank-based fit. We show that the residuals from this fit can be used to detect curvature not accounted for by the fitted model. Furthermore, our diagnostic techniques inherit the excellent efficiency properties of the rank-based fit over a wide class of error distributions, including asymmetric distributions. We illustrate these techniques with several examples.

Idioma originalEnglish
Páginas (desde-hasta)1018-1028
Número de páginas11
PublicaciónJournal of the American Statistical Association
Volumen85
N.º412
DOI
EstadoPublished - dic 1990

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Huella

Profundice en los temas de investigación de 'Regression diagnostics for rank-based methods'. En conjunto forman una huella única.

Citar esto