Solutions of mKdV in classes of functions unbounded at infinity

T. Kappeler, P. Perry, M. Shubin, P. Topalov

Producción científica: Articlerevisión exhaustiva

11 Citas (Scopus)

Resumen

Using P. Lax's concept of a Lax pair we prove global existence and uniqueness for solutions of the initial value problem for mKdV in classes of smooth functions which can be unbounded at infinity, and in particular, may tend to infinity with respect to the space variable. Moreover, we establish the invariance of the spectrum and the unitary type of the Schrödinger operator under the KdV flow and the invariance of the spectrum and the unitary type of the impedance operator under the mKdV flow for potentials in these classes.

Idioma originalEnglish
Páginas (desde-hasta)443-477
Número de páginas35
PublicaciónJournal of Geometric Analysis
Volumen18
N.º2
DOI
EstadoPublished - abr 2008

Nota bibliográfica

Funding Information:
T. Kappeler supported in part by the Swiss National Science Foundation, the programme SPECT, and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-2004-5652). P. Perry partially supported by NSF-grant DMS-0408419. M. Shubin partially supported by NSF-grant DMS-0600196.

Financiación

T. Kappeler supported in part by the Swiss National Science Foundation, the programme SPECT, and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-2004-5652). P. Perry partially supported by NSF-grant DMS-0408419. M. Shubin partially supported by NSF-grant DMS-0600196.

FinanciadoresNúmero del financiador
European Community
NSF-grantDMS-0600196, DMS-0408419
Marie CurieMRTN-CT-2004-5652
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    ASJC Scopus subject areas

    • Geometry and Topology

    Huella

    Profundice en los temas de investigación de 'Solutions of mKdV in classes of functions unbounded at infinity'. En conjunto forman una huella única.

    Citar esto