Resumen
Using P. Lax's concept of a Lax pair we prove global existence and uniqueness for solutions of the initial value problem for mKdV in classes of smooth functions which can be unbounded at infinity, and in particular, may tend to infinity with respect to the space variable. Moreover, we establish the invariance of the spectrum and the unitary type of the Schrödinger operator under the KdV flow and the invariance of the spectrum and the unitary type of the impedance operator under the mKdV flow for potentials in these classes.
| Idioma original | English |
|---|---|
| Páginas (desde-hasta) | 443-477 |
| Número de páginas | 35 |
| Publicación | Journal of Geometric Analysis |
| Volumen | 18 |
| N.º | 2 |
| DOI | |
| Estado | Published - abr 2008 |
Nota bibliográfica
Funding Information:T. Kappeler supported in part by the Swiss National Science Foundation, the programme SPECT, and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-2004-5652). P. Perry partially supported by NSF-grant DMS-0408419. M. Shubin partially supported by NSF-grant DMS-0600196.
Financiación
T. Kappeler supported in part by the Swiss National Science Foundation, the programme SPECT, and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-2004-5652). P. Perry partially supported by NSF-grant DMS-0408419. M. Shubin partially supported by NSF-grant DMS-0600196.
| Financiadores | Número del financiador |
|---|---|
| European Community | |
| NSF-grant | DMS-0600196, DMS-0408419 |
| Marie Curie | MRTN-CT-2004-5652 |
| Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung |
ASJC Scopus subject areas
- Geometry and Topology