Some Remarks on Spectral Averaging and the Local Density of States for Random Schrödinger Operators on L2 (Rd )

Jean Michel Combes, Peter D. Hislop

Producción científica: Conference contributionrevisión exhaustiva

Resumen

We prove some local estimates on the trace of spectral projectors for random Schrödinger operators restricted to cubes ⊂ Rd . We also present a new proof of the spectral averaging result based on analytic perturbation theory. Together, these provide another proof of the Wegner estimate with an explicit form of the constant and an alternate proof of the Birman-Solomyak formula. We also use these results to prove the Lipschitz continuity of the local density of states function for a restricted family of random Schrödinger operators on cubes ⊂ Rd, for d 1. The result holds for low energies without a localization assumption but is not strong enough to extend to the infinite-volume limit.

Idioma originalEnglish
Título de la publicación alojadaSchrödinger Operators, Spectral Analysis and Number Theory - In Memory of Erik Balslev
EditoresSergio Albeverio, Anindita Balslev, Ricardo Weder
Páginas117-132
Número de páginas16
DOI
EstadoPublished - 2021
EventoConference to celebrate Erik Balslev’s 75th birthday, 2010 - Aarhus, Denmark
Duración: oct 1 2010oct 2 2010

Serie de la publicación

NombreSpringer Proceedings in Mathematics and Statistics
Volumen348
ISSN (versión impresa)2194-1009
ISSN (versión digital)2194-1017

Conference

ConferenceConference to celebrate Erik Balslev’s 75th birthday, 2010
País/TerritorioDenmark
CiudadAarhus
Período10/1/1010/2/10

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

ASJC Scopus subject areas

  • General Mathematics

Huella

Profundice en los temas de investigación de 'Some Remarks on Spectral Averaging and the Local Density of States for Random Schrödinger Operators on L2 (Rd )'. En conjunto forman una huella única.

Citar esto