Resumen
We prove some local estimates on the trace of spectral projectors for random Schrödinger operators restricted to cubes ⊂ Rd . We also present a new proof of the spectral averaging result based on analytic perturbation theory. Together, these provide another proof of the Wegner estimate with an explicit form of the constant and an alternate proof of the Birman-Solomyak formula. We also use these results to prove the Lipschitz continuity of the local density of states function for a restricted family of random Schrödinger operators on cubes ⊂ Rd, for d 1. The result holds for low energies without a localization assumption but is not strong enough to extend to the infinite-volume limit.
| Idioma original | English |
|---|---|
| Título de la publicación alojada | Schrödinger Operators, Spectral Analysis and Number Theory - In Memory of Erik Balslev |
| Editores | Sergio Albeverio, Anindita Balslev, Ricardo Weder |
| Páginas | 117-132 |
| Número de páginas | 16 |
| DOI | |
| Estado | Published - 2021 |
| Evento | Conference to celebrate Erik Balslev’s 75th birthday, 2010 - Aarhus, Denmark Duración: oct 1 2010 → oct 2 2010 |
Serie de la publicación
| Nombre | Springer Proceedings in Mathematics and Statistics |
|---|---|
| Volumen | 348 |
| ISSN (versión impresa) | 2194-1009 |
| ISSN (versión digital) | 2194-1017 |
Conference
| Conference | Conference to celebrate Erik Balslev’s 75th birthday, 2010 |
|---|---|
| País/Territorio | Denmark |
| Ciudad | Aarhus |
| Período | 10/1/10 → 10/2/10 |
Nota bibliográfica
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.
ASJC Scopus subject areas
- General Mathematics