Stabilizing block diagonal preconditioners for complex dense matrices in electromagnetics

Xinyu Geng, Yin Wang, Jeonghwa Lee, Jun Zhang

Producción científica: Articlerevisión exhaustiva

6 Citas (Scopus)

Resumen

Preconditioning techniques are widely used to speed up the convergence of iterative methods for solving large linear systems with sparse or dense coefficient matrices. For certain application problems, however, the standard block diagonal preconditioner makes the Krylov iterative methods converge more slowly or even diverge. To handle this problem, we apply diagonal shifting and stabilized singular value decomposition (SVD) to each diagonal block, which is generated from the multilevel fast multiple algorithm (MLFMA), to improve the stability and efficiency of the block diagonal preconditioner. Our experimental results show that the improved block diagonal preconditioner maintains the computational complexity of MLFMA, converges faster and also reduces the CPU cost.

Idioma originalEnglish
Páginas (desde-hasta)1983-1990
Número de páginas8
PublicaciónApplied Mathematics and Computation
Volumen217
N.º5
DOI
EstadoPublished - nov 1 2010

Nota bibliográfica

Funding Information:
This research work was supported in part by China Sichuan Higher Education Commission under grant 09ZA143 , and in part by the US National Science Foundation under grant CCF-0727600 .

Financiación

This research work was supported in part by China Sichuan Higher Education Commission under grant 09ZA143 , and in part by the US National Science Foundation under grant CCF-0727600 .

FinanciadoresNúmero del financiador
China Sichuan Higher Education Commission09ZA143
National Science Foundation (NSF)CCF-0727600

    ASJC Scopus subject areas

    • Computational Mathematics
    • Applied Mathematics

    Huella

    Profundice en los temas de investigación de 'Stabilizing block diagonal preconditioners for complex dense matrices in electromagnetics'. En conjunto forman una huella única.

    Citar esto