State-constrained iterative learning control for a class of MIMO systems

Jian Xin Xu, Xu Jin

Producción científica: Articlerevisión exhaustiva

166 Citas (Scopus)

Resumen

In this note, we present a novel iterative learning control (ILC) method for a class of state-constrained multi-input multi-output (MIMO) nonlinear system under state alignment condition with both parametric and nonparametric uncertainties. Nonparametric uncertainties such as norm-bounded nonlinear uncertainties satisfying local Lipschitz condition can be effectively handled. Barrier Composite Energy Function (BCEF) scheme with a novel Barrier Lyapunov Function is proposed to facilitate the analysis of state tracking error convergence while satisfying the state constraints. In the end, an illustrative example is shown to demonstrate the efficacy of the proposed ILC method.

Idioma originalEnglish
Páginas (desde-hasta)1322-1327
Número de páginas6
PublicaciónIEEE Transactions on Automatic Control
Volumen58
N.º5
DOI
EstadoPublished - may 2013

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Huella

Profundice en los temas de investigación de 'State-constrained iterative learning control for a class of MIMO systems'. En conjunto forman una huella única.

Citar esto