The scattering matrix and its meromorphic continuation in the Stark effect case

P. D. Hislop, D. A.W. White

Producción científica: Articlerevisión exhaustiva

1 Cita (Scopus)

Resumen

Quantum scattering in the presence of a constant electric field ('Stark effect') is considered. It is shown that the scattering matrix has a meromorphic continuation in the energy variable to the entire complex plane as an operator on L2(Rn-1). The allowed potentials V form a general subclass of potentials that are short-range relative to the free Stark Hamiltonian: Roughly, the potential vanishes at infinity, and admits a decomposition V = Vscript A sign + Ve, where Vscript A sign is analytic in a sector with Vscript A sign(x) = O(〈x1-1/2-ε), and Ve(x) = O(eμx1), for x1 < 0 and some μ, ε > 0. These potentials include the Coulomb potential. The wave operators used to define the scattering matrix are the two Hilbert space wave operators.

Idioma originalEnglish
Páginas (desde-hasta)201-209
Número de páginas9
PublicaciónLetters in Mathematical Physics
Volumen48
N.º3
DOI
EstadoPublished - may 1999

Nota bibliográfica

Funding Information:
The first author’s research was supported in part by NSF grant DMS-9707049.

Financiación

The first author’s research was supported in part by NSF grant DMS-9707049.

FinanciadoresNúmero del financiador
National Science Foundation Arctic Social Science ProgramDMS-9707049

    ASJC Scopus subject areas

    • Statistical and Nonlinear Physics
    • Mathematical Physics

    Huella

    Profundice en los temas de investigación de 'The scattering matrix and its meromorphic continuation in the Stark effect case'. En conjunto forman una huella única.

    Citar esto