Resumen
Mung bean protein is considered a highly nutritive food ingredient, but its solution properties are not well defined. In this study, suspensions of mung bean protein isolate (MPI, 10%, w/v) were subjected to high intensity ultrasound (20 kHz, 30% amplitude) at varied durations (5, 10, 20, and 30 min) with controlled temperatures (30, 50, and 70 °C) to determine the effects of thermosonication treatment on physical properties of the protein solution. Results showed that thermosonication treatment significantly reduced the particle size and free sulfhydryl content of MPI in a time-dependent manner. Ultrasound increased surface hydrophobicity, and the exposure of nonpolar groups led to the formation of soluble aggregates. Changes in secondary structure of MPI were minimal at 30 and 50 °C but were significant at 70 °C. The dissociation of native components followed by reaggregation into soluble particles following ultrasound treatment at 70 °C resulted in remarkable improvements of protein solubility (>2 fold), clarity, and stability of the MPI suspensions. The findings indicated that thermosonication could be a promising technology for the processing of mung bean protein beverage.
| Idioma original | English |
|---|---|
| Número de artículo | 104908 |
| Publicación | Ultrasonics Sonochemistry |
| Volumen | 62 |
| DOI | |
| Estado | Published - abr 2020 |
Nota bibliográfica
Publisher Copyright:© 2019 Elsevier B.V.
ASJC Scopus subject areas
- Environmental Chemistry
- Chemical Engineering (miscellaneous)
- Radiology Nuclear Medicine and imaging
- Acoustics and Ultrasonics
- Organic Chemistry
- Inorganic Chemistry