Well-poised hypersurfaces

Joseph Cecil, Neelav Dutta, Christopher Manon, Benjamin Riley, Angela Vichitbandha

Producción científica: Articlerevisión exhaustiva

1 Cita (Scopus)

Resumen

An ideal I is said to be” well-poised” if all of the initial ideals obtained from points in the tropical variety (Formula presented.) are prime. This condition was first defined by Nathan Ilten and the third author. We classify all well-poised hypersurfaces over an algebraically closed field. We also compute the tropical varieties and associated Newton-Okounkov bodies of these hypersurfaces.

Idioma originalEnglish
Páginas (desde-hasta)2645-2654
Número de páginas10
PublicaciónCommunications in Algebra
Volumen49
N.º6
DOI
EstadoPublished - 2021

Nota bibliográfica

Publisher Copyright:
© 2021 Taylor & Francis Group, LLC.

Financiación

The third author was supported by both the NSF (DMS-1500966) and the Simons Foundation (587209) during this project. We thank David Ma and Alston Crowley for many useful conversations. We also thank the UK Math Lab for hosting this project in the spring and fall of 2018.

FinanciadoresNúmero del financiador
National Science Foundation Arctic Social Science ProgramDMS-1500966
Simons Foundation587209

    ASJC Scopus subject areas

    • Algebra and Number Theory

    Huella

    Profundice en los temas de investigación de 'Well-poised hypersurfaces'. En conjunto forman una huella única.

    Citar esto